

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

15 JUNE 2006

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS

Probability & Statistics 2

Thursday

day

Afternoon

1 hour 30 minutes

4733

Additional materials: 8 page answer booklet Graph paper List of Formulae (MF1)

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer **all** the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

1 Calculate the variance of the continuous random variable with probability density function given by

$$f(x) = \begin{cases} \frac{3}{37}x^2 & 3 \le x \le 4, \\ 0 & \text{otherwise.} \end{cases}$$
[6]

- 2 (i) The random variable *R* has the distribution B(6, *p*). A random observation of *R* is found to be 6. Carry out a 5% significance test of the null hypothesis H_0 : p = 0.45 against the alternative hypothesis H_1 : $p \neq 0.45$, showing all necessary details of your calculation. [4]
 - (ii) The random variable *S* has the distribution B(n, p). H_0 and H_1 are as in part (i). A random observation of *S* is found to be 1. Use tables to find the largest value of *n* for which H_0 is not rejected. Show the values of any relevant probabilities. [3]
- 3 The continuous random variable *T* has mean μ and standard deviation σ . It is known that P(T < 140) = 0.01 and P(T < 300) = 0.8.
 - (i) Assuming that T is normally distributed, calculate the values of μ and σ . [6]

In fact, T represents the time, in minutes, taken by a randomly chosen runner in a public marathon, in which about 10% of runners took longer than 400 minutes.

- (ii) State with a reason whether the mean of *T* would be higher than, equal to, or lower than the value calculated in part (i). [2]
- 4 (i) Explain briefly what is meant by a random sample. [1]

Random numbers are used to select, with replacement, a sample of size n from a population numbered 000, 001, 002, ..., 799.

(ii) If n = 6, find the probability that exactly 4 of the selected sample have numbers less than 500.

[3]

- (iii) If n = 60, use a suitable approximation to calculate the probability that at least 40 of the selected sample have numbers less than 500. [6]
- 5 An airline has 300 seats available on a flight to Australia. It is known from experience that on average only 99% of those who have booked seats actually arrive to take the flight, the remaining 1% being called 'no-shows'. The airline therefore sells more than 300 seats. If more than 300 passengers then arrive, the flight is over-booked. Assume that the number of no-show passengers can be modelled by a binomial distribution.
 - (i) If the airline sells 303 seats, state a suitable distribution for the number of no-show passengers, and state a suitable approximation to this distribution, giving the values of any parameters. [2]

Using the distribution and approximation in part (i),

(ii) show that the probability that the flight is over-booked is 0.4165, correct to 4 decimal places,

[2]

(iii) find the largest number of seats that can be sold for the probability that the flight is over-booked to be less than 0.2. [5]

- 6 Customers arrive at a post office at a constant average rate of 0.4 per minute.
 - (i) State an assumption needed to model the number of customers arriving in a given time interval by a Poisson distribution. [1]

Assuming that the use of a Poisson distribution is justified,

(ii) find the probability that more than 2 customers arrive in a randomly chosen 1-minute interval,

[2]

- (iii) use a suitable approximation to calculate the probability that more than 55 customers arrive in a given two-hour interval, [6]
- (iv) calculate the smallest time for which the probability that no customers arrive in that time is less than 0.02, giving your answer to the nearest second. [5]
- 7 Three independent researchers, *A*, *B* and *C*, carry out significance tests on the power consumption of a manufacturer's domestic heaters. The power consumption, *X* watts, is a normally distributed random variable with mean μ and standard deviation 60. Each researcher tests the null hypothesis H_0 : $\mu = 4000$ against the alternative hypothesis H_1 : $\mu > 4000$.

Researcher A uses a sample of size 50 and a significance level of 5%.

```
(i) Find the critical region for this test, giving your answer correct to 4 significant figures. [6]
```

In fact the value of μ is 4020.

- (ii) Calculate the probability that Researcher *A* makes a Type II error. [6]
- (iii) Researcher *B* uses a sample bigger than 50 and a significance level of 5%. Explain whether the probability that Researcher *B* makes a Type II error is less than, equal to, or greater than your answer to part (ii).
- (iv) Researcher C uses a sample of size 50 and a significance level bigger than 5%. Explain whether the probability that Researcher C makes a Type II error is less than, equal to, or greater than your answer to part (ii). [2]
- (v) State with a reason whether it is necessary to use the Central Limit Theorem at any point in this question.

UNIVERSITY of CAMBRIDGE Local Examinations Syndicate

4733 Statistics S2 June 2006

MARK SCHEME: Post-standardisation

1		$\mu = 3 \left[\frac{4}{3} \frac{3}{4} \frac{3}{4} - 3 \frac{3}{4} \right]^4 \left[= 3 \frac{81}{4} \right]$	M1		Integrate $xf(x)$, limits 3 & 4 [can be implied]		
		$\mu = \frac{3}{37} \int_{3}^{3} x^{-} dx = \frac{3}{37} \left[\frac{4}{4} \right]_{3}^{3} \left[\frac{5}{148} \right]_{4}^{3}$			$\left[\frac{525}{148} \text{ or } 3.547\right]$		
		$x \int x^{4} dx = x \int x^{5} \int x^{4}$	M1		Attempt to integrate $x^2 f(x)$, limits 3 & 4		
		$\frac{3}{37}\int_{3} x^{2} dx = \frac{3}{37}\left \frac{1}{5}\right $	A1		Correct indefinite integral, any form		
		$= 12\frac{123}{100}$ or 12.665	A1		$\frac{2343}{185}$ or in range [12.6, 12.7] [can be implied]		
		$\sigma^2 = 12123 - 381^2 = 0.0815$	M1		Subtract their μ^2		
		$12\frac{1}{185}$ $3\frac{1}{148}$ 0.0013	A1	6	Answer, in range [0.0575, 0.084]		
2	(i)	Find $P(R \ge 6)$ or $P(R < 6)$	M1		Find $P(= 6)$ from tables/calc, OR RH critical region		
		= 0.0083 or 0.9917	AI		$P(\ge 6)$ in range [0.008, 0.0083] or $P(<6) = 0.9917$		
		Compare with 0.025 [con he from N]	D 1		OR CR is 6 with probability 0.0083/0.991/		
		[0.05 if "empty I H tail stated]	DI	4	OR state that result is in critical region		
		Reject H ₀	A1√	-	Correct comparison and conclusion $$ on their <i>n</i>		
	(ii)	n = 9 P(< 1) = 0.0385 [> 0.025]	M1		At least one or $n = 8$ P(< 1) = 0.0632		
		$n = 10, P(\le 1) = 0.0233$ [< 0.025]	A1		Both of these probabilities seen, don't need 0.025		
		Therefore $n = 9$	B1	3	Answer $n = 9$ only, indep't of M1A1, <i>not</i> from P(= 1)		
3	(i)	$(140 - \mu)/\sigma = -2.326$	M1		One standardisation equated to Φ^{-1} , allow "1–", σ^2		
		$(300 - \mu)/\sigma = 0.842$	B1		Both 2.33 and 0.84 at least, ignore signs		
			A1√		Both equations completely correct, $$ on their z		
		Solve to obtain:	M1		Solve two simultaneous equations to find one		
		$\mu = 257.49$	Al		variable		
		$\sigma = 50.51$	AI	6	μ value, in range [257, 258]		
	(ji)	Higher	D1		σ in range [50.4, 50.55]		
	(11)	night as there is positive skew	B1 B1	2	Plausible reason allow from normal calculations		
4	(i)	Each element equally likely to be	B1	1	One of these two "Selections independent" alone is		
-	(-)	selected (and all selections	21	-	insufficient, but don't need this. An example is		
		independent) OR each possible sample			insufficient.		
		equally likely					
	(ii)	B(6, 5/8)	M1		B(6, 5/8) stated or implied, allow e.g. 499/799		
		${}^{0}C_{4}p^{2}(1-p)^{2}$	Ml	2	Correct formula, any p		
	(;;;)	= 0.3218/	Al√ D1	3	Answer, a.r.t. 0.322, can allow from wrong p		
	(111)	N(57.5, 225/10) 20.5 27.5	BI B1		Normal, mean 37.5, or 57.47 from 499/799, 499/800		
		$\frac{39.3-37.5}{2.75} = 0.5333$	M1 den	,	Standardise wrong or no cc. nn und no \sqrt{n}		
		3.75	A1		Correct cc. \sqrt{nna} signs can be reversed		
		$1 - \Phi(0.5333)$	dep M1		Tables used, answer < 0.5 , $p = 5/8$		
		= 0.297	A1	6	Answer, a.r.t. 0.297		
					SR: $np < 5$: Po(np) stated or implied, B1		
5	(i)	B(303, 0.01)	B1		B(303, 0.01) stated, allow $p = 0.99$ or 0.1		
		$- \mathbf{p}_{2}(2,02)$	D1	2	Allow Bin implied clearly by parameters		
	(ii)	\approx FO(5.05)	ы М1		10(5.05) stated of implied, can be recovered from (1)		
	(11)	$e^{-3.03} (1 + 3.03 + \frac{3.03}{2}) = 0.4165 \text{ AG}$	A 1	2	Convincingly obtain 0.4165(02542) [Exact:		
		2	211	-	0 41535]		
	(iii)	$302 \text{ seats} \Rightarrow \mu = 3.02$	M1		Try smaller value of u		
	. /	$e^{-3.02}(1+3.02) = 0.1962$	M1		Formula, at least one correct term		
			A1		Correct number of terms for their μ		
		0.196 < 0.2	A1		0.1962 [or 0.1947 from exact]		
		So 302 seats.	Al	5	Answer 302 only		
	SR:	B(303, 0.99): B1B0; M0; M1 then N(298	8.98,2.98	98)	or equiv, standardise: M1A1 total 4/9		
	SR:	$p = 0.1$: B(303, 0.1), N(30.3, 27.27) B1B0; Standardise 2 with $np \& \sqrt{npq}$, M1A0;					
	CD.	N(0.1 <i>n</i> , 0.09 <i>n</i>); standardise with <i>np</i> & \sqrt{npq} ; solve quadratic for \sqrt{n} ; $n = 339$: M1M1M1A1, total 6/9					
	SK.	$B(303, 0.01) \approx N(3.03, 2.9997)$: B1B0; M0A0; M1A0					

UNIVERSITY of CAMBRIDGE Local Examinations Syndicate

4733 Statistics S2 June 2006

MARK SCHEME: Post-standardisation

6	(i)	Customers arrive independently	B1	1	Valid reason in context, allow "random"	
	(ii)	1 – 0.9921	M1		Poisson tables, "1 –", or correct formula \pm 1 term	
		= 0.0079	A1	2	Answer, a.r.t. 0.008 [1 – 0.9384 = 0.0606: M1A0]	
	(iii)	N(48, 48)	B1		Normal, mean 48	
		z = 55.5 - 48	B1√		Variance or SD same as mean $$	
		$\sqrt{48}$	M1 dep)	Standardise, wrong or no cc, $\mu = \lambda$	
		= 1.0825	A1		Correct cc, $\sqrt{\lambda}$	
		$1 - \Phi(1.0825)$	dep M1		Use tables, answer < 0.5	
		= 0.1394	Al	6	Answer in range [0.139, 0.14]	
	(iv)	$e^{-\lambda} < 0.02$	M1		Correct formula for P(0), OR P(0 $\lambda = 4$) at least	
		$\lambda > -\ln 0.02$	M1		ln used OR $\lambda = 3.9$ at least by T & I	
		= 3.912	A1		3.91(2) seen OR $\lambda = 3.91$ at least by T & I	
		0.4t = 3.912: $t = 9.78$ minutes	M1		Divide λ by 0.4 or multiply by 150, any distribution	
		t = 9 minutes 47 seconds	A1	5	587 seconds \pm 1 sec [inequalities not needed]	
7	(i)	c - 4000 = 1.645	M1		Standardise unknown with $\sqrt{50}$ or 50 [ignore RHS]	
		$\overline{60 / \sqrt{50}}$	B1		z = 1.645 or -1.645 seen	
			A1√		Wholly correct eqn, $$ on their z [1 – 1.645: M1B1A0]	
		Solve	M1		Solve to find <i>c</i>	
		c = 4014 [4013.958]	A1		Value of <i>c</i> , a.r.t. 4014	
		Critical region is > 4014	A1√	6	Answer "> 4014", allow \geq , $$ on their <i>c</i> , needs M1M1	
	(ii)	Use "Type II is: accept when H ₀ false"	M1dep		Standardise 4020 and 4014 $$, allow 60 ² , cc	
		4020 - 4014	depM1		With $\sqrt{50}$ or 50	
		$60 / \sqrt{50}$	A1√		Completely correct LHS, $$ on their <i>c</i>	
		= 0.7071 [0.712 from 4013.958]	A1		<i>z</i> -value in range [0.707, 0.712]	
		$1 - \Phi(0.7071)$	M1	_	Normal tables, answer < 0.5	
		= 0.240 [0.238 from 4013.958]	Al	6	Answer in range [0.2375, 0.2405]	
	(iii)	Smaller	B1		"Smaller" stated, no invalidating reason	
		Smaller cv, better test etc	B1	2	Plausible reason	
	(iv)	Smaller	B1		"Smaller" stated, no invalidating reason	
		Smaller cv, larger prob of Type I etc	B1	2	Plausible reason	
1	(v)	No, parent distribution known to be	B2		"No" stated, convincing reason	
		normal		2	SR: If B0, "No", reason that is not invalidating: B1	

4733 Statistics S2 June 2006

MARK SCHEME: Post-standardisation

Exemplar Answers

3		All from	m "Increase because "	
		α	More people run a faster time assuming that it is approximately normal	B1B0
		β	Only 1 in 10 run slower so possible that none of them was chosen	B1B0
		γ	For it to remain normal the normal curve should be symmetrical bes	t B1B0
		δ	A large proportion took much longer than the mean and to compensate	10%
			would have had to run in about 10 minutes which is impossible	B1B1
4		α	Not biased, selected fairly	B0
		β	Where you assign each element a number and select using random num	bers B0
6 (i)	α	Events are independent of one another	B0
(,	β	Customers arrive at a constant random rate	B0
		γ	Customers are random wors	st B1
		δ	Customers arrive singly	B1
7 (i	ii)	All from	m "Smaller because …"	
		α	As sample size increases the probability of wrongly accepting H ₀ decrea	asesB1B0
		β	Bigger <i>n</i> makes <i>z</i> -value more negative	B1B0
		γ	Bigger sample means lower probability of inaccurate conclusion wors	st B1B1
		δ	Bigger sample is more accurate	B1B1
		3	Denominator will be smaller	B1B1
		ζ	Smaller critical value so less chance of wrongly accepting H_0	B1B1
(iv	v)	All from	m "Smaller because …"	
		α	Critical region will be larger making it less likely to reject wrongly	B1B0
		β	Bigger significance level makes P(wrongly accept H ₀) smaller	B1B0
		γ	Less chance of concluding that H ₀ is correct initially	
		B1B0		
		δ	The test statistic will increase, giving a larger value of \overline{x}	B1B0
		3	Smaller acceptance region so less likely to lie within it wors	st B1B1
		ζ	Higher significance level will decrease probability of accepting H ₀	B1B1
		η	Bigger difference between critical value and new mean [with diagram]	B1B1
		θ	A larger significance level means a more accurate answer	B1B1
		l	Smaller <i>z</i> -value so smaller critical value	B1B1
(v)	All from	m "not necessary to use CLT because"	_
		α	At any point the sample mean and variance are not greater than 4000	B0B0
		β	The distribution is normal and the sample fairly large	B1B0
		γ	The mean is normally distributed	B1B0